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Abstract
A recent study investigated the capability to assimilate hydrometeor retrievals in the National
Oceanic and Atmospheric Administration (NOAA) Hurricane Weather Research and Fore-
casting (HWRF) system. Hydrometeor retrievals were obtained from a hurricane-specific
retrieval that utilizes data from the Global Measurement Mission Microwave Imager. Data
assimilation system used in HWRF is the hybrid ensemble-variational Gridpoint Statistical
Interpolation (GSI). As a first attempt to assimilate hydrometeor retrievals in HWRF, obser-
vation operators for solid and liquid integrated water content were developed using the GSI
standard control variables, such as temperature, pressure, and specific humidity, under the
assumption that all water vapor in excess of saturation is condensed out. To improve the use-
fulness of assimilating hydrometeor retrievals in HWRF, this study extends this previous work
by introducing new observation operators that (1) directly use hydrometeor species estimated
from HWRF microphysics and (2) include total cloud condensate as a control variable. Hur-
ricane Gonzalo (2014) was used to examine the performance of the old and new observation
operators on HWRF analysis and subsequent forecasts with three pairs of experiments. Results
suggest that when new observation operators are used the analysis is an improved fit to obser-
vations and realistic adjustments to control variables are evident as seen in analysis increment.
In addition, the forecasts also indicate some improvements in hurricane intensity.

Keywords: data assimilation; hydrometeor retrievals; HWRF; observation operators; cloud
microphysics

1. Introduction

Hurricane intensity and structure are fundamentally
related to clouds. Among all the available obser-
vations, the use of all-sky satellite radiances and
satellite-retrieved hydrometeors (e.g. Boukabara et al.,
2013; Kummerow et al., 2015) are especially important
for improving hurricane forecasting, because they
contain valuable information about cloud and precipi-
tation that often occur in sensitive regions in terms of
forecast impact (Bauer et al., 2011). While techniques
to assimilate these observations (Bauer et al., 2010;
Zhu et al., 2016) are currently used on a global scale
(Global Forecast System; GFS), implementation on
a regional scale is yet to be done. In this study, the
National Oceanic and Atmospheric Administration
(NOAA) operational Hurricane Weather Research
and Forecasting (HWRF) system (Tallapragada et al.,
2015) is used as a representation of such regional scale
model that currently assimilates neither all-sky satellite
radiances nor hydrometeor retrievals.

As a preliminary attempt toward assimilating
hydrometeor retrievals in HWRF, techniques were
developed. In Wu et al. (2016), two observation opera-
tors to assimilate integrated solid–water content (SWC)
and liquid–water content (LWC) are implemented in
the hybrid Gridpoint Statistical Interpolation (GSI; Wu

et al., 2002; Kleist et al., 2009; Wang, 2010). The inte-
grated SWC and integrated LWC were obtained from
a hurricane-specific microwave retrievals that utilizes
data from the Global Measurement Mission (GPM)
Microwave Imager (GMI), referred to as Hurricane
Goddard PROFiling algorithm (GPROF) (Brown et al.,
2016). These two observation operators were built
based on the assumption that super-saturated water
vapor will condense out; the one for integrated SWC,
referred to as hs_noHydro, is,
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and the one for integrated LWC, referred to hl_noHydro,
is,
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where T is temperature, P is pressure, q is specific
humidity, es is saturation vapor pressure, the superscript
k denotes the model level index, k0 is the vertical
level where temperature is T0 = 273.15 K, kmix is the
vertical level where temperature is Tmix = 253.15 K,
kmax is the index for the top model level, ΔPk is pressure
difference between two vertical levels k and k+ 1 (i.e.
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ΔPk =P(k)−P(k+ 1)), and g is the acceleration due to
gravity.

Due to the super-saturation assumption that only
depends on temperature, specific humidity, and temper-
ature, there was no need to include cloud condensate
as an additional control variable. However, as pointed
out by Wu et al. (2016), using hs_noHydro and hl_noHydro
may potentially create a negative bias of the guess
due to the use of already saturated-then-condensed
water vapor. Because of the potential negative bias
and the lack of cloud condensate updates, new tech-
niques have been developed that include new observa-
tion operators, which directly use cloud microphysical
variables. This is done by including total cloud con-
densate mass (CWM) as control variable and adding
individual hydrometeor species (cloud water, rain, ice,
snow, graupel, and hail) as state variables; a technique
that follows the GSI all-sky implementation developed
by Zhu et al. (2016).

2. Methodology

2.1. Preparation of background hydrometeor
species

The HWRF v3.7a release (Tallapragada et al., 2015)
is employed in this study. Among the various HWRF
physics packages, cloud microphysics scheme is most
directly related to the assimilation of hydrometeor
retrievals because microphysics explicitly handles the
behavior of hydrometeor species. The Ferrier–Aligo
microphysics scheme (Aligo et al., 2014) employed by
HWRF predicts changes in water vapor mixing ratio
(qv) and CWM, which is the combined sum of individ-
ual hydrometeor species that include cloud water (ql),
rain (qr), cloud ice (qi), snow (qs), graupel (qg), and hail
(qh). Since individual hydrometeor species are not prog-
nostic variables, they are diagnosed from CWM with
the use of partition parameters that include fraction of
ice (F_ICE), fraction of rain (F_RAIN), and values of
riming rate (F_RIMEF).

2.2. CWM partition

There exist one formula in GSI that can be used to par-
tition CWM into individual hydrometeor species (ql,
qi, qr, qs, qg, qh) with the use of F_ICE, F_RAIN,
and F_RIMEF. This formula, referred to as P6, is part
of a routine called cloud_efr_mod.f90. This routine
takes CWM from Ferrier–Aligo microphysics and pro-
vides mass mixing ratios and particle sizes of individual
hydrometeor species as input to the Community Radia-
tive Transfer Model (CRTM; Han et al., 2006), which
is used by GSI to compute top-of-the-atmosphere radi-
ances for a given HWRF background.

The first step of P6 formula uses F_ICE to determine
the solid and liquid phases of CWM, that is,

the solid phase of CWM = F_ICE · CWM (3)

and

the liquid phase of CWM = (1 − F_ICE) · CWM (4)

Then, F_RAIN is used to partition the liquid phase of
CWM into ql and qr as

ql = (1 − F_RAIN) · (1 − F_ICE) · CWM (5)

and
qr = F_RAIN · (1 − F_ICE) · CWM (6)

Similarly, the solid phase of CWM is decomposed
into qi and precip_ice as

qi = w · F_ICE · CWM (7)

and
precip_ice = (1 − w) · F_ICE · CWM (8)

where precip_ice is precipitating ice as opposed to
qi being the nonprecipitating ice, using an empirical
weighting coefficient w

w =

{
0.05 · T−T2

T1−T2
+ 0.1 · T−T1

T2−T1
if T ≤ T1

0.05 if T > T1

(9)

where T is temperature, T1 = 243.15 K, and
T2 = 233.15 K.

Finally, depending on the values of F_RIMEF,
precip_ice will be equal to either qs, qg, or qh as
follows

precip_ice =
⎧⎪⎨⎪⎩

qs if 1 ≤ F_RIMEF ≤ 5
qg if 5 < F_RIMEF ≤ 20
qh if F_RIMEF > 20

(10)

After the partition, individual hydrometeor species
(ql, qi, qr, qs, qg, and qh) are used by the new observation
operators, which are discussed next.

2.3. New observation operators

The new observation operator for integrated SWC,
referred to as hs, is defined as a vertical integration of the
solid hydrometeor species including cloud ice, snow,
graupel, and hail, that is,

hs =
kmax∑
k=k0
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)
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g
(11)

Similarly, the new observation operator for integrated
LWC, referred to as hl, is defined as a vertical integra-
tion of the liquid hydrometeor species including cloud
water and rain, that is,

hl =
kmix∑
k=1

(
qk

l + qk
r

)
· ΔPk

g
(12)

A horizontal smoothing procedure is carried out
prior to the vertical integration in Equations (11) and
(12). This horizontal smoothing is done by applying a
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formulation of recursive filter (Hayden and Purser,
1995) to the individual hydrometeor species. Such
smoothing procedure was necessary because values of
integrated SWC and integrated LWC computed by hs
and hl from a given HWRF background were found
much larger compared to observations during the pre-
liminary development. As a result, large values of inno-
vation were created and observations were rejected. The
horizontal smoothing was used to reduce large inno-
vations by smoothing individual hydrometeor fields.
Reasons causing the large innovation values are left
for future investigation, because they may be related
to the cloud microphysics scheme and the P6 formula.
In addition, the spatial resolution of Hurricane GPROF
retrievals (5–10 km) is incomparable to the HWRF grid
that has a grid spacing of 2 km. Due to the different reso-
lutions, fine features that are associated with clouds and
precipitations, which may be inferred from an HWRF
background, may not be detected in the retrievals due
to a coarse footprint size.

3. Experiments

Hurricane Gonzalo (2014) is used in this study. In order
to have a large portion of Gonzalo covered by Hurricane
GPROF data, only three analysis times are selected and
they are (1) 0600 UTC 13 October, (2) 1200 UTC 16
October, and (3) 0600 UTC 17 October. Examples of
integrated SWC and integrated LWC valid at these three
times in the innermost domain of HWRF are displayed
in Figure 1. In Figures 1(a) and (b), a less organized
precipitation structure with no indication of the center
of Gonzalo is seen in analysis time (1). In contrast, a
well-defined spiral feature in Figures 1(c)–(f) is evident
in both analysis times (2) and (3), which is indicative a
mature hurricane.

3.1. Prepare for assimilation

Currently, HWRF only assimilates radiances under
clear-sky condition. Therefore, there is no preparation
of microphysical variables for a background field. Prior
to data assimilation, vortex initialization is carried out
to improve the HWRF hurricane vortex through a series
of adjustments. After vortex initialization, a background
field that contains an improved vortex is then provided
and used by GSI. However, currently, adjustment of
cloud microphysical variables was not considered by
vortex initialization, hence, values of CWM and parti-
tion parameters are set to zero. In order to include cloud
condensate variables in HWRF assimilation, techniques
are developed in HWRF, which can be summarized
in three procedures: (1) reinitialize CWM and F_ICE,
F_RAIN, and F_RIMEF in the background prior to data
assimilation, (2) add CWM as control variable and add
individual hydrometeor species as state variables, and
(3) include tangent linear and adjoint parts of P6 for-
mula (Equations (3)–(10)) in the minimization of the
cost function.

Specifically, in (1), a possible solution to avoid the
zero-cloud-condensate situation was proposed. That is,
values of CWM, F_ICE, F_RAIN, and F_RIMEF in
the 6-h HWRF forecast from a previous HWRF cycle
are mapped onto a background (same grid spacing)
provided by vortex initialization. Since the center of a
hurricane in the 6-h HWRF forecast may be different
from the center of the observed one, three-dimensional
fields of CWM and partition parameters from the 6-h
HWRF forecast are horizontally shifted to the true
center before mapping to the background. In (2), the
cross-variable correlations between CWM and other
variables are described by the hybrid background error
covariance, in which 20% comes from a static compo-
nent embedded in GSI (Wu et al., 2002) and 80% comes
from an ensemble component. For the static compo-
nent that is based on the National Meteorological Cen-
ter (NMC), the former name of National Centers for
Environmental Prediction (NCEP) method (Parrish and
Derber, 1992), the same correlations for qv are used
to describe the correlations for CWM. For the ensem-
ble component, the 80-member GFS ensemble forecasts
are used. Since Ferrier–Aligo microphysics scheme is
employed by both GFS and HWRF, CWM is also a
prognostic variable to GFS. By adding CWM as an
additional control variable, correlations between CWM
and other control variables estimated by both static and
ensemble components will be included in the hybrid
background error covariance. Consequently, the result-
ing analysis will contain a consistent update of CWM
and other control variables. This is important as pointed
out by Huang (1996) that a consistent treatment of cloud
and other control variables can avoid imbalanced initial
condition. In (3), by including tangent linear and adjoint
parts of Equations (3)–(6) in the cost function mini-
mization, conversions between individual hydrometeor
state variables and CWM control variable are carried
out during each iteration.

As mentioned above, the 80-member GFS ensemble
is used by HWRF. There exists a potential undesir-
able impact on the HWRF analysis and forecast when
non-native ensemble is used (e.g. vortex spindown as
discussed by Pu et al., 2016). Due to the different scales
and architectures of the two models, background error
covariance estimated by the GFS ensemble may be
unable to accurately describe the cross-variable corre-
lations of HWRF.

3.2. Experimental design
Two experiments are conducted that use two different
pairs of observation operators and they are (1) CTL,
which uses the 2015 HWRF operational configuration
(Tallapragada et al., 2015) and assimilates integrated
SWC and integrated LWC retrievals using hs_noHydro
and hl_noHydro while conventional observations are also
assimilated in the innermost domain of HWRF, and (2)
USEP6, the same as CTL, except that hs and hl are
used instead. Both CTL and USEP6 experiments are
conducted for Hurricane Gonzalo (2014) at the three
analysis times.
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(a) (b)

13 October 2014: 0600 UTC

Integrated SWC Integrated LWC

Integrated SWC Integrated LWC

Integrated SWC Integrated LWC

16 October 2014: 1200 UTC

17 October 2014: 0600 UTC

(c) (d)

(e) (f)

Figure 1. Hurricane GPROF retrieved (a) integrated SWC (kg m−2) and (b) integrated LWC (kg m−2) at 0600 UTC 13 October
during Hurricane Gonzalo (2014). (c), (d) and (e), (f) are the same as (a) and (b), except that they are valid at 1200 UTC 16 October
and 0600 UTC 17 October. A horizontal black line along 26.5∘N in (c) and (d) indicates the latitude at which the cross-sections
shown in Figure 3 were taken.

4. Results

4.1. Observed versus simulated
A scatterplot is produced to summarize the assimilation
statistics from the three pairs of CTL (dots) and USEP6
(triangles) experiments. In Figure 2, statistics are pre-
sented in terms of the absolute values of background
innovation (observation minus background), |O−B|,
plotted on the y-axis and the absolute values of anal-
ysis innovation (observation minus analysis), |O−A|,

plotted on the x-axis. A diagonal solid line will be
referred to as the 1-1 line.

In general, there are more data points from USEP6
located above the 1-1 line. In Figure 2, 42% (45%) of
the data points of integrated SWC (integrated LWC)
from the CTL experiment (circles) are above the 1-1
line, while 55% (77%) of the data points of integrated
SWC (integrated LWC) from the USEP6 experiment
are above the 1-1 line. One may also notice that there
exhibits a wider spread of USEP6 data points, which
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(a) (b)
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Figure 2. Scatterplot of absolute values of observation minus analysis (|O−A|) versus absolute values of observation minus
background (|O−B|) from the three pairs of CTL (blue dots) and USEP6 (green triangle) experiments.

Figure 3. East–west cross-section of analysis increments (color) overlapped with background field (contour) from the USEP6
experiment: (a) CWM (g kg−1), (b) specific humidity (g kg−1), and (c) temperature (K). (d)–(f) are the same as (a)–(c), except for
analysis increments from the CTL experiment.

suggest that there are many larger values of background
innovation of integrated SWC produced when using hs.
In contrast, a narrower spread of USEP6 data points
are seen in Figure 2(b) when using hl is used. Never-
theless, USEP6 analysis was an improvement of fit to
observations over the background (i.e. |O−A|< |O−B|)
when compared to that of CTL, which is encouraging.

4.2. Analysis increments

A vertical cross-section of analysis increments (analy-
sis minus background) for CWM, specific humidity, and

temperature is produced. In Figure 3, analysis incre-
ments from both CTL and USEP6 experiments valid
at 1200 UTC 16 October is displayed along 26.5∘N
(Figures 1(c) and (d)).

Nonzero CWM increments in the USEP6 experiments
are evident in the region where observations are located
(Figure 3(a)), while no CWM increments are displayed
in CTL experiment (Figure 3(d)), as expected. Focus-
ing on the USEP6 experiment, the increase of con-
densate between 600 and 900 hPa may be related to
the liquid component of CWM, while the reduction
between 200 and 500 hPa is likely due to the solid
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Figure 4. (a) Track error (km) and (b) MSLP (hPa) from the 72 h HWRF forecasts initialized using the CTL (blue) and USEP6
(green) analyses valid at 0600 UTC 13 October during Hurricane Gonzalo (2014). (c)–(d) and (e)–(f) are the same as (a)–(b),
except for forecasts initialized at 1200 UTC 16 October and 0600 UTC 17 October, respectively. Black solid lines represent the
corresponding estimates from NHC best-track data.

component (Figure 3(a)). These responses in CWM
appear to coincide with the corresponding increments
in specific humidity and temperature where warming
and moistening is evident in lower troposphere and
cooling and drying is more pronounced in upper tro-
posphere (Figures 3(b) and (c)). On the other hand, the
adjustments of specific humidity and temperature in the
CTL experiment (Figures 3(e) and (f)) show a tendency
to reach super-saturation by moistening and cooling the
air column. Such adjustments are considerably different

from the USEP6 experiment with additional constraints
from CWM.

4.3. Hurricane track and intensity forecasts

Three pairs of 72-h HWRF forecasts initialized with
CTL and USEP6 analyses are conducted. Forecast
track error and intensity (minimum sea-level pressure;
MSLP) from CTL and USEP6 are compared with
best-track data from National Hurricane Center (NHC).
Results suggest that USEP6 forecasts have slightly

© 2017 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 18: 238–245 (2017)
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larger track errors during the first 48 h, but the errors
become smaller compared to CTL forecasts in the last
24 h (Figures 4(a), (c) and (e)). In general, the differ-
ences between the track errors from CTL and USEP6
forecasts are small. The intensity forecast as measured
by MSLP from USEP6 is found closer to the NHC
best-track values than CTL for the two forecasts initial-
ized at 1200 UTC 16 October and 0600 UTC 17 October
(Figures 4(d) and (f)). There is no obvious difference
between the intensity forecasts initialized by CTL and
USEP6 analyses valid at 0600 UTC 13 October when
Gonzalo was a tropical storm (Figure 4(b)).

5. Summary and discussion

New observation operators are developed to extend
upon the work by Wu et al. (2016). Due to the limita-
tions that include a potential negative bias and the lack
of cloud condensate updates from using observation
operators based on super-saturation (hs_noHydro and
hl_noHydro), new observation operators are developed
by directly using hydrometeor species estimated from
cloud microphysical variables. Since the Ferrier–Aligo
microphysics scheme predicts CWM rather than
the individual hydrometeors, an empirical formula
embedded in GSI is used to partition CWM into
individual hydrometeor species. Then, the new obser-
vation operators, hs and hl, are defined as a vertical
integration of solid and liquid hydrometeor species,
respectively.

Hurricane Gonzalo (2014) is selected to perform three
pairs of CTL and USEP6 experiments to examine the
impact of assimilating retrieved integrated SWC and
integrated LWC using hs_noHydro and hl_noHydro (CTL)
and hs and hl (USEP6) on HWRF analysis and sub-
sequent forecast. For USEP6 experiments, encourag-
ing results are obtained, in which the analysis was an
improvement of fit to observations over the background,
when compared to CTL. Including CWM as a control
variable is found to have a clear impact on other vari-
ables, such as specific humidity and temperature. In
general, USEP6 experiment appears to result in similar
forecast track to that of the CTL experiment. Neverthe-
less, the MSLP forecast from the USEP6 experiment
shows some improvement over the CTL forecast in two
of the three cases.

As stated earlier, cloud microphysics scheme is essen-
tial to the development of the new observation oper-
ators, hs and hl. As an operational model, HWRF is
currently restricted to use a rather simple but computa-
tionally efficient scheme that predicts total cloud con-
densate instead of individual hydrometeor species. If
switched to a more sophisticated microphysics scheme
that predicts individual hydrometeor species, the par-
tition formula may be avoided. As a result, individual
hydrometeors are more accurately accounted for dur-
ing data assimilation, thus, improved assimilation of the
retrieved integrated SWC and integrated LWC is antici-
pated. In addition, the resulting analysis may be further

improved by using the HWRF-based ensemble, which
is a more optimal choice over the GFS ensemble.
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